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S U M M A R Y  
When the rising plume in a stagnant ambient fluid impinges the free surface it spreads radially as a surface layer flowing 
over a pool of heavier liquid. Initially the surface layer in the "entrainment zone" entrains the underlying fluid, but the 
entrainment decreases with the increasing distance from the "boil". The radius of the entrainment zone depends on the 
initial buoyancy flux from the nozzle and also on submergence height. It was assumed that the flow in this zone has a 
self-preserving form. The theoretical results based upon this assumption showed that the maximum velocity and density 
difference of the layer decreases as powers of radius distance measured from centre of the boil and the depth varies 
linearly with the radius, so that the sectional Richardon's number based on maximum physical quantities of the section 
remain unchanged. It was further shown that the coefficient of the entrainment remains constant and is a function of the 
Richardson's number and the slope of the interface. The theoretical results were compared with those obtained ex- 
perimentally and fair agreement was obtained. 

At the end of the entrainment zone the surface layer enters the "zone of homogeneous flow" in which the layer travels 
over the underlying fluid and behaves much like a free homogeneous flow over a rigid boundary : the friction at the 
interface replacing the friction of the boundary. In this zone the mean velocity of the layer in the radial direction was 
measured and found that it decreases inversely with the increase of radius. The thickness of the layer in the zone of 
homogeneous flow remains constant and depends, as far as experiments show, greatly on the submergence height. 

1. Introduction 

When a buoyant effluent is discharged from a submerged pipe into a static (or gently moving) 
body of water it rises to the surface and dilutes en route. The behaviour of the buoyant jet at 
some distance from the nozzle is like a convectional plume above a point source, provided the 
diameter of the nozzle relative to the vertical reach of the buoyant jet is small. The rising column 
of effluent breaks the free surface at the "boil" and spreads radially over the ambient fluid as a 
surface layer. This layer entrains more of the ambient fluid as it spreads, and hence it becomes 
more diluted. Both the dilution and the thickness are of interest to engineers concerned with the 
disposal of sewage or other wastes into the sea, including the discharge of warmed water from 
the cooling systems of power stations. 

The spread of the surface layer and its dilution depend upon whether the surrounding fluid 
is moving or at rest. In the latter case the surface layer will mix less with the ambient fluid than 
in the former case and hence the most severe condition to take into account in the design of a 
submarine outfall into tidal waters is slack water. This condition of an ambient fluid at rest is 
considered in the present paper and in this case the entrainment of the underlying fluid by the 
surface layer decreases with the distance from the "boil" point, where the rising column im- 
pinges on the free surface. The surface layer then reaches a final stage within which its density 
and its thickness remain unchanged. The ultimate thickness of the surface layer, and the radius 
at which this final stage is reached, depend upon the depth of submergence and the geometry of 
the outlet, i.e. upon whether it is discharging horizontally or vertically upwards. Rawn and 
Palmer [-13 measured the final thickness of the surface layer and found it to be about ~2 of the 
length of the trajectory of the buoyant jet, when the outlet discharges horizontally. Hart [2], 
on the other hand, found that the thickness of the layer is about ~ of the submergence when the 
buoyant jet discharges vertically upwards. Hart also measured the dilution of the surface layer 
at a distance of about 1 ft from the boil, which was probably within the entrainment zone in 
some of his model tests. Sharp 1-3] measured the velocity of the tip of the layer for various 
horizontal discharges. 
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In the present investigation, both the "entrainment zone" of the surface layer and its final 
stage, the "zone of homogeneous flow", were studied. It has been assumed theoretically that the 
flow in the entrainment zone has a self-preserving form. This means that the flow is geometri- 
cally similar at all sections. This was confirmed when the experimental results were compared 
with the theory. Theoretically it was found that the sectional Richardson's number (defined 
later) remains unchanged. Further it was found that the coefficient of entrainment (defined as 
the rate of inflow of the underlying fluid into the surface layer) depends on the sectional Richard- 
son's number and also the slope of the interface, hence it remains constant, because of constant 
slope of the interface. 

In the experimental part of this investigation fresh water was discharged vertically upwards 
at two different submergence depths into a salt solution at rest. The density of the surface 
layer was measured at various radial distances from the boil, and also at various depths. From 
this information the thickness of the layer and its dilution were determined. Measurements were 
also made of the velocity and the surface slope of the surface layer. 

2. Theory 

2.1. Entrainment zone 

The entrainment of the underlying fluid into the moving surface layer will continue to a distance 
re from the "boil" (see Fig. 1 for nomenclature and illustration). Beyond the radius re it is 
assumed that the turbulence has decayed to such an extent that the flow does not entrain the 
underlying fluid. In this case the surface flow is similar to the type of flow that will occur with a 
homogeneous fluid. This part of the surface layer will be dealt with later. Firstly various 
features of the surface flow in the entrainment zone between the "boil" and re (see Fig. 1) will be 
examined. 

It will be assumed that the motion in this zone is steady. This means that the tip of the surface 
layer is sufficiently far from the boil and the underlying fluid is not contaminated by the process 
of the entrainment. It will be further assumed that the local variation in density remains small 
relative to some reference density. Thus, the Boussinesque approximation may be made, namely 
that the density difference between the ambient fluid and surface layer can be neglected except 
where multiplied by 9, the acceleration due to gravity [4]. The equations of motion for a turbu- 
lent, incompressible flow of the surface layer with negligible energy dissipation may be written 
as follows by using the system of co-ordinates shown in Fig. 1. 

(uSU 8u) 8 p 1 8  
P ~r + v ~zz = f -  8r  + -r~rr (r~). (2.1) 

The equation of conservation of mass density can be written as follows 

O(rAp) 8(rAp) 8 (rv, Ap,) (2.2) 
u ~ + v 8z - ~z 

it entrainment zone zone of homogeneous f low 

g. po 
Figure 1. Definition of terms for surface layer. 
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and the continuity equation can be written in the following form 

(3 (ur) (3 (vr) 
- -  + - O .  ( 2 . 3 )  & & 

In the above equations r and z are natural cylindrical co-ordinates with respective local velocity 
u and v. f i s  the body force in the r-direction and z the Reynolds shear stress. Ap = pa-p  with 
Pa and p the mass density of the underlying fluid and surface layer respectively and, finally, 
v'A p' is the correlation between fluctuation of vertical velocity v and the density differences Ap. 

In equation (2.1) the body forcefis the component of buoyancy force in the r-direction and 
can be written 

f =  - g (Pa - P) sin 0 (2.4) 

where 0 is the angle of inclination of the interface, g ( p , - p )  is the local buoyancy (local weight 
density). The second term on the right-hand side of equation (2.1) is the variation of the hydro- 
static pressure in the r-direction and can be written 

(3p_ (3 
ar Or [g(p~-p)z] (2.5) 

Tile above equation represents the variation of the pressure force on the surface layer due to 
the change of its density and thickness. In other words, the difference between the hydrostatic 
pressure on the faces r and r+dr. By substituting equations (2.4) and (2.5) into equation (2.1) 
we obtain 

Ou a u _  A P r s i n O + r ~ r ( g A p  t 1 (3 ur ~r + vr Oz g P~ --  --  z + ~ ~r (rz). (2.6) 

In order to proceed with the theoretical development, in the following section we must exa- 
mine the condition of self-preserving flow in the entrainment zone. 

3 .  S e l f - p r e s e r v a t i o n  

The motion in the vertical plume exhibits a self-preserving flow. This indicates that the condi- 
tions of each section above the nozzle are similar. Now, when the flow turns from the vertical 
direction into a horizontal radial flow it is appropriate to look for the existence of a self-preserv- 
ing flow, and a reasonable assumption at this stage would be that the velocity distribution 
depends only on a characteristic velocity and length for that section, and the density distribu- 
tion depends only on a characteristic density and the same characteristic length for that section, 
i.e. 

g 
= U~fl(tl), t/ = ~ (3.1) v =  Ap=Ap G(,) Po 

in which Us and Ap~ are functions of r alone and h is the depth of layer. 
If expressions (3.1) are substituted into equation (2.6), with suitable rearrangement and by 

making use of equation (2.3), the following form is obtained 

h dU. F2(r/) dh 
Us dr dr F(tl)F'(tl)tl 

IT __dh F,(tl) F,(tl)tldt 1 + 
dr o 

gAp, h 
Pa 

Ap~ h g 
Pa h 

G(rl)rl + 
r 

Ap~ h 
dh g Pa 
dr 

�9 t /  

h d(U~r)F,(tl)f F(q)dq+ 
U~r dr o 

sin OG(rl) 

(g Aps ) 
d - ~  h2 G(rl)~l- 

dr 

a'( . ) .  =f; (3.2) 
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primes refer to differentiation with respect to t/. 
If the flow in the entrainment zone is a self-preserving one, the functions f (17), G (r/) and f l  (t/) 

are independent of r, hence the solution of equation (3.2) requires that the coefficient of the 
universal functions be either zero or non-zero constant [5], [6]. For a non-trivial solution, 
consider the ratios to be non-zero constant. The non-repetitive coefficients are 

dh h dU~ h d(U~r) g h d g h2 
Pa sin 0, (3.3) 

dr'  Us d r '  Us r dr ' U 2 'dr U 2 

Each of the above coefficients must be equal to a constant, hence 

h= C l r ,  Us = C2r, ' Ap~ = C3rZa_ 1 (3.4) 
Pa 

and 
Ap~ 

o - -  h / g ~  = c , .  
Pa 

The above results show that the depth of the layer varies linearly with the radial distance r 
(i.e. sin 0 is constant) and the velocity and the density scale varies as a power of r. Equation (3.4) 
further shows that the sectional Richardon's number, Ri, (g (ApJp~)h/U~ = Ri)), based upon 
the value of velocity and density scale and the depth of surface layer, remains constant. At this 
stage no further deduction can be made concerning the exponent a and it is therefore necessary 
to obtain a further relation if a is to be determined uniquely. These relations can be obtained 
from equations (2.2) as follows. Equation (2.2) will be integrated with respect to z to give the 
following equation by making use of the continuity equation and assuming that v' Ap'= 0 at 
z = 0 and at z=  h, hence: 

d r  o 

By substituting expression (3.1) into equation (3.5) we obtain 

d 
I~ dr (Aps U~hr) = 0 (3.6) 

where 

Io = flo F(~l)G(rl)drl. 

The above equation can be written in the following form 

AP--2 Ushr = constant.  (3.7) 
Pa 

By substituting for Ap/p,, Us and h the expressions given in equation (3.4) into the above 
equation it can be seen that the obtained equation can only be satisfied if its exponents equal 
zero, that is 

2a - 1 + a + 2 = 0 (3.8) 

hence 
1 

Thus 
U s = C2r-+ 

(3.9) 
ApJpa = Ca r -~ �9 -[ 

By this procedure the power a has been determined without making use of the momentum 
integral equation which, as shown later, can be derived when equation (2.6) is integrated with 
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respect to z (see equation (4.5) section 4). Equations (3.9) show that in the region of the entrain- 
ment zone, where the assumption of a self-preserving flow is acceptable, the velocity and the 
density scale decrease as the radius r increases in such a way that with the linear increase of the 
depth the sectional Richardson's number remains constant. 

4. Entrainment 

In plumes and jets, the turbulent region, which is of finite extent, grows with the distance down- 
stream of the issuing sources and their edge expands to engulf the surrounding fluid. This will 
be accepted here as the concept of the entrainment process. Hence this entrainment implies a 
flow of the underlying fluid into the turbulent surface layer and when the underlying fluid is 
at rest there is a small inflow velocity perpendicular to the main flow [7]. The mean value of 
inflow velocity can be determined when the continuity equation (2.3) is integrated with respect 
to z, i.e. 

- -  urdz = - v ' r  (4.1) 
dr o 

in which - v is the mean inflow velocity and according to the above concept of the entrainment 
it is equal to the entrainment velocity, Ue. Hence equation (4.1), by substituting expression 
(3.1) into it, can be written in the following form 

d (Ushr)= Ue r (4.2) 

where 

11 = F(rl)dr I . 
o 

The above equation shows that the increase of mass of the surface layer in the entrainment zone 
is due to the entrainment velocity Ue. Substituting for h and Us from equations (3.4) and (3.9) 
into equation (4.2) it follows that 

Ue = C5 r -~ �9 (4.3) 

This shows that the entrainment velocity Ue varies with r in the same way as the velocity scale 
Us. Here it will be assumed that the entrainment velocity Ue in the region of self-preserving flow 
is proportional to the velocity scale Us. This means that the Reynolds number is high enough 
for the effect of molecular viscosity to be negligible. Hence we can write 

Ue Csr -~ 
c~ = Us Cer ~ - constant. (4.4) 

The above expression shows that the proportionality factor e, or the coefficient of entrainment, 
in the self-preserving region of the surface layer remains constant. The constant value of the 
coefficient of entrainment differs for different types of self-preserving flows. For instance in two 
dimensional and circular momentum jets the value of e is equal to 0.075 and 0.07 [6], [7]. For 
a two-dimensional and a circular plume c~ is 0.16 and 0.082 respectively [8]. Here an attempt is 
made to determine the factors upon which the coefficient of entrainment may depend. 

Equation (2.6) can be integrated with respect to z to give the following equation by considering 
that the integral of the Reynolds shear stress is zero at z = 0 and at z = h. Hence 

d 
d~ [fho Pu2rdz] = -- [fho g(P"-p)rdz] sin + ~r Ifho g(p,--p)rzdz] . (4.5) 

The left-hand side of the above equation can be derived when the integration is carried by 
parts and by making use of the continuity equation (2.3). 

Multiplying equation (2.6) by velocity U, and integrating with respect to z, also by making 
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use of the continuity equation when the integration is carried by parts, the following equation 
is obtained [6]. 

h d p) urzdzJ . (4.6) d [fo�89 I f [  9(Pa-p)urdz] sin O + d r  [f[ g(pa- 

The above equation, in fact, is an expression of mechanical energy in the r-direction and it gives 
the relation between the rate at which energy of the flowing fluid changes and the rate at which 
work must be done to cause these changes [9], [10]. Substituting for u and (p,-p) the expres- 
sions given in equation (3.1) into equations (4.5) and (4.6) it follows that 

d (gAp~ r) d (gdP~h2r) (4.7) I2~r(UZhr)=-I 3 ~ h  sin 0+I4 ~ r Pa 

h dr (U)hr)= - 2 / ~  Pa U~h sin 0+216 dr --Pa Ush2r (4.8) 

in the above equations 

fl (r/)dr/ 1 2 =  F 2 , 
0 

I s = f ~ F3(//)dq, 
Jo 

1 (4.9) 

I6 = 10 F(.)  

Equation (4.8) can be written in the following form 

2us d(UZhr)dr U2 d(Ushr)dr - 2 ~1~ (g Apspa U~hr) sin O+216 d dr 9 APs ush2r ). ( 

Multiplying equation (4.7) by 2 Us and substituting into equation (4.10) the following equation is 
obtained 

d(Ushr) Aps hr 1 d ( Ap~ r) 1 d (g Aps ) d r -  A'9-f~ ~sinO-A2~2~2dr g-~a Ush2 + A 3 E d r r  -PT h2r (4"11) 

where 
A =2(I  Io) Io 14 \ i 2 - - ~ ,  A2=2~5  and A3=2~2  

all of which are numerical constants. 
On comparing equation (4.11) with equation (4.2) and considering equation (4.4) the follow- 

ing expression, with suitable rearrangement, can be derived for the coefficient of entrainment, 
i.e. 

1 d 1 d 2 U~ -I1A1R, sin 0-I2A2 ~ dr (uahrR')+I1Aa = --Us = dr (U; hrR,) (4.12) 

where Ri is the Richardson's number and is constant (see Section 3 equation (3.4)). By sub- 
stituting for Us and h from equation (3.9) and (3.4) into equation (4.12) and replacing constant 
C 1 by sin 0 it gives 

= 11 ( -  A1 - A 2  +-~a3)Ri sin 0.  (4.13) 

Equation (4.13) shows that the coefficient of entrainment depends on the Richardon's number 
and also the slope of the interface. Hence the value of ~ remains constant for each experimental 
run. The above equation shows that the value of ~ for a given Ri is maximum when 0 = 7~/2 and 
the entrainment is negligible when the interface is horizontal. The numerical values of I1 and 
A 1-A3, which in turn depend upon the definition of functions F(0  and G(0, can be determined 
by using equations (7.13) and (7.14), which were determined from velocity and density profiles 
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obtained from the experimental measurements. However, the numerical values are: 

I s=0.625,  A1=0.204, A2=1.676 and A3=1.646 

By substituting the above values and also for Us and h from (3.9) and (3.4) into equation (4.13) 

= 0.197 R i sin 0 (4.14) 

The value of 0 did not exceed 5 ~ and Ri for all experimental runs varies between 0.62 and 0.86, 
hence the value of e is less than 0.0148. This value of c~ agrees reasonably well with the experi- 
mental results of Ellison et al. [7]. 

5. Zone of Homogeneous Flow 

Beyond some radius r e (see Fig. 1) the velocity, Us, becomes small, and entrainment is negligible. 
This means that the interface becomes horizontal (0 ~ 0 see Section 3). The surface layer beyond 
the "entrainment zone" moves into a new zone in which the layer travels over the underlying 
pool, behaving much like homogeneous flow over a level surface. The surface layer in this 
zone is affected only by gravitational and inertial forces. The density and velocity is first assumed 
to be uniform throughout the layer with a discontinuity at the interface. This simplified ap- 
proach helps the interpreting of experimental results, some deviation between the results of the 
analysis and experiment being anticipated due to those secondary aspects which would have 
to be considered in a precise quantitative analysis. However, the approach also entails the 
assumption that the thickness of the surface layer remains constant, the density of the layer 
equalling that at the end of the entrainment zone (see Fig. 1). 

Let Ui be the velocity at radius ri = re and hi the thickness of the layer. Then the relationship 
to the buoyancy flux, B, (see also Equation (3.7)) at radius re can be written as follows : 

2rcrihi Uig ( p . -  p,) = B (5.1) 

where Pi is the density of the surface layer in the zone of homogeneous flow. All terms in equa- 
tion (5.1) are constant except ri and Ui, hence we can write 

B 
U~ri -  27zh ig(pa-p i ) -  C .  (5.2) 

The above equation indicates that the velocity decreases inversely with the increase of radius. 
By substituting Ui = dri/dt, where t is the displacement time, into equation (5.2) it follows 

dr i 
ri ~ = C (5.3) 

subject to the boundary condition 

r i  = r e ,  t = t e . (5.4) 

By integrating equation (5.3) with the use of (5.4) we obtain the following equation : 

r , -  ro = te) . (5.5) 

In order to compare the experimental results with the above equation, the value of C needs to 
be defined in the case of a real fluid, when a boundary layer exists adjacent to the interface 
between the two-layered fluid. One effect of the boundary layer is to cause a displacement to the 
external flow (potential flow), which will probably have to be taken into account when ex- 
perimental results are compared with the simplified theory. The actual thickness hi can be 
expressed as 

h = h, + h* (5.6) 

where h* is the displacement thickness by which the potential flow of the thickness, hi, is forced 
away from the interface (see Fig. 1). By substituting equation (5.6) into equation (5.2) the follow- 
ing relation can be obtained: 
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B 
= C (5.7) 

2~z [g (Pa-  Pi) h - g (p, - Pl ) h*] 

where p~ is the mean value of density in the layer of thickness, h*. Experiments possibly show 
that the second term in the denominator of equation (5.7) is small and can be neglected in 
comparison with the first term" B can be determined by calculating the velocity U~ (see equa- 
tion (3.10) and also section 7) at a radius r where e becomes negligible. 

6. Experiments 

Installation and measurements 

A tank 16 • 16 • 6 ft deep was filled with fresh water, to which salt was added to give the re- 
quired concentration of 25 g/1. A homogeneous solution was obtained by running a 6 cusec 
pump, which sudked the salt solution from a bottom corner of the tank and fed it back to the 
tank at two different places on the floor of the tank. The density was measured at various points 
using a Princeton electrical conductivity probe whilst the pump was running. An experiment 
was not started until at least 4 hours had elapsed, by which time all disturbance caused by the 
mixing process had died out. The density and temperature of the solution were checked before 
each experiment. 

The buoyant jet consisted of fresh water discharged from a 1 in. diameter nozzle. This was 
supplied from a header tank with overflow, thus providing a constant head. The discharge was 
registered by a variable-orifice flow meter of commercial design. The temperature of the am- 
bient fluid and effluent were matched during each experimental run. 

The velocity of the surface layer was measured photographically, viewing with a cine camera 
above the tank. By placing a temporary square grid at the water surface the scale of the film was 
obtained. Two methods were used to measure the velocity of the surface layer. 

First, methylene blue organic dye (concentration 40 mg/1) at the required temperature 
was injected into the pipe feeding the effluent nozzle. This method gave the velocity of the tip 
of the surface layer. The second method was adopted in order to measure the velocity of the 
surface layer behind the tip. Buoyant white coloured balls of 0.9 in. diameter were placed at the 
free surface of the layer at short intervals. This method proved very convenient and hence 
was used throughout the experimental work. The velocity distribution through the depth of the 
surface layer was obtained by means of a miniature current meter. 

The density at points in the surface layer was deduced from the concentration using the 
Princeton probe in situ. The diameter of this probe was ~ in tapered to ~ in. at the electrode. 
The probe measured the turbulent fluctuation of conductivity, from which the mean value was 
determined by inspection. 

The slope of the free surface of the surface layer in the zone of homogeneous flow was 
measured as follows. Silver nitrate was sprayed uniformly on a strip of paper one inch wide, 
together with a layer of potassium chromate. When such a paper strip is partly immersed in 
salt solution, it turns white (silver chlorate) with a sharp line indicating the free surface. The 
prepared strips were first placed one foot apart dipping into the ambient salt solution from a firm 
bridge. The sharp line indicating the horizontal free surface before the experimental run was 
marked with a fine pencil line. After an experiment, the division between the bright and dark 
colouration indicated the free surface of the spreading layer. The surface layer slope could then 
be determined from the marks on the paper strips. 

7. Experimental Results 

It was shown in Section 3 that the velocity and the density scales vary as powers of radius 
distance r from the virtual origin and are of the form given in equation (3.9). This equation 
may be written as 

Journal of Engineering Math., Vol. 6 (1972) 257-272 



Radial spreadin 9 as a free surface layer of a vertical buoyant jet 265 

u, = C2(ro+r')-  (7.1) 
and 

ApJpa = Ca (ro + r') -} (7.2) 

where r 0 is the radius distance from the beginning of the surface layer (point O in Fig. 1) to the 
point where the turbulence is assumed to originate (virtual origin). The values of the constants 
C2 and Ca and also of the virtual origin ro need to be determined. 

Since the velocity and the density scales are functions of radius r, and variables Uo, ho (the 
velocity and the depth of the surface layer at section O) Apb (the density differences at the boil, 
Apb =Pb--Pa) and 9. Here it will be assumed, as was also confirmed experimentally, that the 
density in the hatched area in Fig. l is equal at the boil. Dimensional analysis shows that the 
dependent variables Us, Ap~ and h can be expressed in the following forms 

Us _ f l  (~o Fo ) (7.3) 
Uo 

Ap bAps - f2 (~o ,Fo ) (7.4) 

ho - f3 , 

where 

Fo = Uo/(ghoApb/Pa) ~ . 

Equation (7.3) can be written in the following form by using equation (3.9) 

Us _ (r/ho)_r 
Uo 

Similarly equation (7.4) gives 

APs -~ 
- ( r / h o )  cP2 (Fo). 

dPb 

On comparing equations (7.6) and (7.7) with equation (3.9) it is found that 

c2 = Voho~ol (Fo) 

and 

(7.5) 

(7.6) 

(7.7) 

(7.8) 

C 3 - Apb ho~P2(Fo), (7.9) 
Pa 

The velocity and density scale were assumed to be the maximum values of these quantities 
which occur near the surface for each section. The measured values of velocity were compared 
with equation (7.6) by considering equation (7.8) it was found that the equation (7.6) can be 
written in the following form 

(r o 7) Us = 1.19 + 1. (7.10) 
c0 

in which it was assumed, and also confirmed experimentally, that the initial depth ho-~ rp, 
where rp is the plume radius at height H (see Fig. 1) and Uo = Qo So/2rch~ where So = Pa - Po/Pa - Pb 
and Qo is the flux from the nozzle having density Po. Equation (7.10) together with the ex- 
perimental measurements for various initial densirnetric Froude numbers /7o are shown 
in Fig. 2. Similarly it was found that equation (7.7) can be written in the following form 

)~ Ap _ O.245 (r l  + 2.3 (7.11) 
A Ps \ho 

It should be noted that equation (7.11) is the reciprocal of equation (7.7) and is written in this 
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Figure 2. Distribution of velocity scale in the entrainment zone. 
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Figure 3. Dilution of the surface layer in the entrainment zone. 

form because of its practical use, However, equation (7.11), together with the experimental 
results, are shown in Fig. 3. On comparing (7.11) with (7.10) it can be seen that the radius of the 
virtual origin for the non-dimensional velocity Us/Uo differs from that of the non-dimensional 
density A pb/A Ps. This means that the dilution of the surface layer will start when U~ Uo = 1.11 
or r' t /ho = r ' / h o + 0 . 5 .  

7.1 Veloc i t y  

The times taken for the white buoyant balls to travel to various radii were measured from the 
film, and evaluated according to equation (5.5). If the assumption used for deriving equation 
(5.5) is correct where ri > r e, and the flow condition is that of an inviscid fluid, then the points 
should fall on a straight line when the values of r~ are plotted against (2C) ~ t ~, the inclination of 
the line being 45 ~ This plot can be seen in Figs. 4 and 5 for non-dimensional submergence height 
of H/D = 18 and 40. It appears that the zone of homogeneous flow of constant depth occurs 
in the region when r i > 30 approximately for the case considered here. When ri < 30 the plotted 
data deviate from the 45 ~ straight line indicating that radial velocity is not inversely propor- 
tional to radius. The variation of 2C with F r for the cases given in Figs. 4 and 5 are shown in 
Fig. 6. Fr is the nozzle densimetric Froude number defined as 
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Figure 4. Length time curve of the surface layer in the zone of homogeneous flow for H/D= 18. 
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Figure 5. Length time curve of the surface layer in the zone of homogeneous flow for HID = 40. 

t~ 

16 

t 

/ 
J 

6 ~ I0  12 14 16 t8 20 2 2 

Figure 6. Variation of constant C of Eq. (5.2) with nozzle densimetric Froude number Ft. 
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Qo 
F,  = D2 Pa--Po �89 (7.12) 

rc--4-(g P. D) 

where D is the nozzle diameter. 
In one experiment the dye technique was combined with the use of buoyant balls. The 

results of this experiment are shown in Fig. 7, which shows the velocity of the tip and the zone 
behind the tip. On comparing the two curves in this figure it can be seen that the balls travel 
faster than the tip of the dye (Cb=l~ > Cdyo). The fact that the radial velocity is inversely propor- 
tional to radius beyond r~ = 30 in. is also confirmed. 

,o, 
70 o o 

60 

50 

o % o d e  

20 ; ; ; ; , 'o  Jo ;o ;o 5'o s'o7'o 
- - t ( s )  

Figure 7. Length time curve for the tip and behind the tip. 

It was also observed that the dye front in the zone of homogeneous flow tended to diffuse 
sideways and it is believed that this may have been due to incomplete homogeneity of the am- 
bient fluid. The motion of the balls following a short distance behind the tip was always in a 
radial direction. 

7.2. D e n s i t y  Pro f i l e  

Fig. 8 shows the density profile plotted non-dimensionally in the entrainment zone at various 
radii for two nozzle densimetric Froude numbers, Fr = 5.23 and 6.87. In it is also shown a fitted 
expression for functions G(q) i.e. 
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Figure 8. Density distribution in the entrainment zone. 
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G(q) = ~t/-�89 . (7.13) 

The above function and the one for the velocity profile (defined later) was used to determine 
the value of the integrals given i n equation (4.9). Although other expressions could be found with 
a better fit to the experimental data, they would not cause any significant change to the value 
of integrals, which was used to evaluate the constants in equation (4.13). 

Fig. 9 shows the non-dimensional density profile measured in the zone of homogeneous flow 
for various values of Fr and a difference will be noted from those given in Fig. 8, because they 
relate to a different type of flow. Fig. 9 shows less variation of density in the moving part of the 
depth of the layer than in the entrainment zone. 
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Figure 9. Density distribution in the zone of homogeneous flow. 

The distinction between the zones is even more apparent in Fig. 10. Fig. 10a shows the typical 
pictures of density fluctuation at points in the turbulent zone using the conductivity probe 
described before, and Fig. 10b shows the results obtained in the zone of homogeneous flow, 
where density fluctuations were not observed even when the recording time was increased from 
20 seconds to 45 seconds. 

7.3. Velocity Profile 

The results of measurements with a miniature current meter for nozzle densimetric Froude 
numbers F, = 5.23 and F, = 6.87 are shown non-dimensionally in Fig. 11. It was rather difficult 
to obtain more experimental data with the current meter when the velocity was low. It was 
also impossible to obtain satisfactory velocity measurements for high values of Fr because the 
time to run such an experiment was too short. However, the following expression 

F(q) = ~t/--2Lt/3 (7.14) 

is given in this figure, which shows a fair agreement with the experimental data. Equations 
(7.13) and (7.14) show that the functions are zero and 1 when t/= 0 and q = 1 respectively, and 
furthermore have a horizontal tangent at q = 1. 

7.4. Final Thickness of the Surface Layer 

Experiments with a vertical nozzle showed that the final thickness of the moving layer (h = 
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Figure 11. Velocity distribution in the entrainment zone. 

; .0 

hi+h*, see equation (5.6)) depends on the submergence height H. Measured values of h, 
for all values of the densimetric Froude number Fr shown in Fig. 9 was 1.38 in. when H was 18 in. 
and hence h / H ~  in this case. When the submergence height H was increased to 40 in. the 
final thickness h for all values of Fr given in Fig. 9 increased to 2.37 in., which gives h /H ,~ .  
Thus, although the final thickness of the surface layer increases with the increasing H, h/H does 
not remain constant. In other words, when the submergence height H increases by, say, 100~ 
the value of h increases by 70~ only. This, of course, cannot be applicable for all cases and 
probably the ratio h/H approaches a constant value for values ofH > 40 in. The higher value of 
h/H (i.e. h/H > ~)  may be a simple scale effect, or h/H may depend on H/D. However, the 
above results should be accepted with reserve and more experimental work is necessary to 
establish its validity. 

7.5. Surface Slope 

Slopes, S, of the surface layer were measured for various Fr values when the tip of the moving 
layer was about 5 in. from the wall of the tank. The measurements showed that in the zone of 
homogeneous flow S~0.00165 when the submergence was 18 in. and S~0.00195 when H =  
40 in. The measurements did not indicate any surface slope in the entrainment zone. 
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